当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Jonah Ezekiel
Solar Radiation Management (SRM) is a proposed solution to climate change, which involves reflecting sunlight away from the Earth to cool the planet. Currently, the major proposed forms of accomplishing this are complicated, only theoretical, and fraught with negative external consequences. This project examines a novel approach to SRM: Introducing reflective particles to the surface of the ocean. Data was collected through experimentation with bodies of saltwater with variable quantities of a specific reflective compound, TiO2 (Titania), dispersed on the surface. The difference in the rate of temperature change when exposed to a constant thermal radiation source was measured. Thermodynamic and climate relationships and known values were then used to ultimately calculate the quantity of Titania that would be needed to counterbalance the radiative forcing effects of current and projected climate change. These results alongside other research were used to consider the external consequences of this form of SRM, and finally to consider its legitimacy in relation to conventional climate solutions and other SRM options. While more research is needed to make full conclusions, it was found that this method would likely be more expensive than other proposed SRM forms, though substantially less expensive than conventional emission reduction solutions, and that its external negative impact on the environment could be less pronounced than other SRM options.