ISSN: 2157-7617

地球科学と気候変動ジャーナル

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

インデックス付き
  • CAS ソース インデックス (CASSI)
  • 索引コペルニクス
  • Google スカラー
  • シェルパ・ロミオ
  • 環境研究へのオンライン アクセス (OARE)
  • Jゲートを開く
  • Genamics JournalSeek
  • ジャーナル目次
  • ウルリッヒの定期刊行物ディレクトリ
  • Global Online Research in Agriculture (AGORA) へのアクセス
  • 国際農業生物科学センター (CABI)
  • レフシーク
  • ハムダード大学
  • エブスコ アリゾナ州
  • OCLC-WorldCat
  • プロクエスト召喚
  • SWBオンラインカタログ
  • パブロン
  • ユーロパブ
  • ICMJE
このページをシェアする

抽象的な

Rainfall Runoff Estimation Using GIS and SCS-CN Method for Awash River Basin, Ethiopia

Shimelis Sishah

Understanding hydrological behavior is an important part of effective watershed management and planning. Runoff resulted from rainfall is a component of hydrological behavior that is needed for efficient water resource planning. In this paper, GIS based SCS-CN runoff simulation model was applied to estimate rainfall runoff in Awash river basin. Global Curve Number (GCN250), Maximum Soil Water Retention (S) and Rainfall was used as an input for SCS-CN runoff simulation model. The final surface runoff values for the Awash river basin were generated on the basis of total annual rainfall and maximum soil water retention potential (S) of the year 2020. Accordingly, a runoff variation that range from 83.95 mm/year to a maximum of 1,416.75 mm/year were observed in the study region. Conversely, recently developed Global Curve Number (GCN250) data was tested with Pearson correlation coefficient to be used as an input for SCS-CN runoff simulation model. The results of validation show that, predicted runoff was well correlated with observed runoff with correlation coefficient of 0.9253. Furthermore, correlation analysis was performed to explain the relationship between mean annual rainfall and surface runoff. The relationship between these two variables indicates a strong linear relationship with correlation coefficient of 0.9873.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません。