ISSN: 2476-2024

病理診断: オープンアクセス

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

抽象的な

Repeated Exposure to Ozone Produces Changes in Metabolic Disturbances Present in the TDP-43A315T Transgenic Model of Amyotrophic Lateral Sclerosis

Ana Rodriguez, Agueda Ferrer-Donato, Susana Sesena, Paloma Fernández, Alfonso Aranda, Carmen M. Fernandez-Martos

Metabolic abnormalities play a key role in the pathogenesis of Amyotrophic Lateral Sclerosis (ALS). Different drugs have been used in the clinical practice; however, no current therapeutic disease-modifying intervention exists. The biological effect of ozone (O3) has gained much attention in neurodegenerative disorders, due to its strong capacity to induce controlled oxidative stress and inflammation. However, its effect on metabolism are very less studied, even though O3 is known for cause endocrine and metabolic changes, increasing food intake and body fat mass. Considering that body weight gain and mild obesity appears to improve survival in ALS patients, the aim of this study was to address the role of O3 on the metabolic disturbances present in ALS. To test this hypothesis,(4 hours/day). The effect of O3 exposure on ALS disease progression was addressed by monitoring body weight loss and motor performance until the disease end-stage in ALS mice. Furthermore, we investigated the action of O3 on plasma glucose content and biomarkers of metabolism by immunoassay. O3 exposure significantly improves motor performance and mitigates disease-associated weight loss in TDP-43A315T mice. As well, circulating levels of TDP-43TDP-43A315T mice and age-matched WT ittermates, were exposed to O3 (0.25 ppm) or filtered air (FA) for 15 days metabolic proteins and glucose in plasma were highest at disease end-stage after O exposure in TDP-43A315T mice. These findings provide the first insights into the mechanistic link between O3 exposure and the improvement of the metabolic disturbances present in ALS, based on experimental data.