当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Mei Wang, Xiangchun Li and Zongxiu Yin
Several studies have shown Secreted Clusterin (sCLU) silencing directed against sCLU mRNA in sCLU-rich lung cancer cell lines sensitized cells to chemotherapy. However, the molecular mechanisms underlying the effect of sCLU silencing on lung cancer cell chemosensitivity is not known. In the present study, we aimed to determine that vector expressing short hairpin RNA against sCLU RNA (sCLU-shRNA) enhances the chemosensitivity in human small cell lung cancer A549 cells in vitro by inhibition of phosphorylated ERK1/2 (p-ERK1/2) and Akt (p-Akt). The pCDNA3, 1-sCLU and control scrambled pCDNA3. 1 plaismid was constructed. We investigated the effects of sCLU overexpression by pCDNA3. 1-sCLU transfection on chemosensitivity to cisplatin (DDP) in A549 cells in vitro. We down-regulated sCLU expression by short hairpin RNA against sCLU RNA (sCLU-shRNA) and investigated the effects on chemosensitivity to DDP in A549 cells and A549DDP in vitro. In order to confirm the correlation between sCLU and AKT and ERK1/2 signals, cells were treated with wortmannin and U0126. We found the chemotherapeutic agent DDP activated sCLU. Overexpression of sCLU increased cellular DDP chemoresistance in the A549DDP and pCDNA3. 1-sCLU transfected A549 cells via inhibition DDP-induced apoptosis.Whereas sCLU knockdown induced chemosensitization in the S549 and A549DDP cells via increase of DDP-induced apoptosis. sCLU overexpression activated pAkt Ser473 and pERK1/2Thr202/Tyr204, and vice versa. Inhibition of pAkt Ser473 and pERK1/2Thr202/Tyr204 was sufficient to induce significant recovery in chemosensitivity to DDP in A549DDP in the presence of sCLU overexpression. The chemotherapeutic agent DDP activated sCLU, which directly regulated pAkt and pERK1/2. This novel finding suggests that therapies directed against sCLU and its downstream signaling targets pAkt and pERK1/2 may have the potential to enhance the efficacy of DDP-based chemotherapy.