当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Amane Santdos Ummara
High-performance liquid chromatography (HPLC) is a widely used analytical technique that enables the separation, identification, and quantification of components in complex mixtures. It relies on the differential interaction of analytes with a stationary phase and a mobile phase. HPLC offers high resolution, sensitivity, and versatility, making it an essential tool in various scientific fields. The principle of HPLC involves the use of a column packed with a stationary phase and a high-pressure pump to deliver a mobile phase. As the mobile phase passes through the column, components in the sample interact with the stationary phase based on their physicochemical properties. This results in the separation of the components, which are detected and quantified using various detectors, such as UV, RI, or fluorescence detectors. HPLC finds applications in pharmaceutical analysis, environmental monitoring, food and beverage analysis, forensic sciences, and biomedical research. It is used for drug analysis, quality control, and formulation development in the pharmaceutical industry. In environmental analysis, HPLC is employed to detect and quantify pollutants in water, soil, and air samples. In the food and beverage industry, HPLC ensures product safety and quality by analyzing additives, preservatives, and contaminants. In forensic sciences, HPLC is used for drug screening and toxicology analysis. While HPLC offers numerous advantages, there are also limitations and challenges associated with this technique. These include high operating costs, limited sample throughput, and limited sensitivity for low-abundance compounds. However, ongoing advancements in HPLC technology continue to address these limitations, expanding its capabilities and enhancing its performance.