当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Vishnuvarthanan Govindaraj, Anitha Vishnuvarthanan, Arunprasath Thiagarajan, Kannan M, and Pallikonda Rajasekaran Murugan
Malignant and benign types of tumor, infiltrated in human brain are diagnosed with the help of an MRI scanner. Using the slice images obtained using an MRI scanner; certain image processing techniques are implemented to have a clear anatomy of brain tissues. One such image processing technique is hybrid Self Organizing Map (SOM) with Fuzzy K Means (FKM) algorithm, which offers a possible identification of tumor region penetration in the tissues of brain. The proposed algorithm is efficient in terms of Jaccard Index, Dice Overlap Index (DOI), Sensitivity, Specificity, Peak Signal to Noise Ratio (PSNR), Mean Square Error (MSE) and Computational time and memory requirement for processing the Magnetic Resonance (MR) brain images. Automatic detection of tumor region in MR (Magnetic Resonance) brain images has a good impact in helping the radio surgeons to identify the exact topographical location of tumor region. In this paper, the proposed hybrid SOM – FKM algorithm supports the radio surgeon by providing tissue segmentation and an automated tumor identification.