ISSN: 1165-158X

細胞および分子生物学

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

抽象的な

Silencing MRP7 Gene by siRNA Reversed Multidrug Resistance in Hepatocellular Carcinoma Resistant Cell Line HepG2/ADM and SMMC7721/ADM

Qing Chen, Fan Hu, Fan Zhang, Jie Zhou

Objective: To investigate the effect on silencing MRP7 gene by siRNA reversed multidrug resistance in hepatocellular carcinoma resistant cell line SMMC7721/ADM and HepG2/ADM.

Methods: SMMC7721 and HepG2 cells were transfected with different gradient concentrations of doxorubicin (ADM) to produce HepG2/ADM and SMMC7721/ADM. MRP7-siRNA was transfected into HepG2/ADM and SMMC7721/ADM cells by lipofectamine 2000 liposomes. Real-time fluorescent quantitative RT-PCR was used to detect MRP7 mRNA expression in each group. Western blot was used to detect the expression of MRP7 protein. Transwell Invasion Assay and Flow Cytometry were used to detect the influence on the invasion ability and apoptosis of hepatoma cells after silencing MRP7 Gene.

Results: MTT assay revealed that the IC50 values and RI of SMMC7721/ADM and HepG2/ADM cells were decreased after treatment with siRNA. The mRNA expression of MRP7 was significantly decreased in SMMC7721/ ADM and HepG2/ADM cells after siRNA transfection. Compared with the expression of parental cells, MRP7 protein expressions were apparently decreased in SMMC7721/ADM and HepG2/ADM cells. Flow cytometry showed that silencing MRP7 gene may result in a significantly higher rate of apoptosis of HepG2/ADM and SMMC7721/ADM cells. Transwell assays showed that silencing MRP7 gene significantly reduced the invasive potential of SMMC7721/ADM and HepG2/ADM cells.

Conclusion: After silencing MRP7 gene in SMMC7721/ADM and HepG2/ADM cells by siRNA, the sensitivity of the cells to chemotherapeutic drugs was significantly increased and can partially reverse the drug resistance of the cells to chemotherapeutic drugs.