当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Donghun Trepat
Osteoarthritis is a prevalent degenerative joint disease characterized by the breakdown of articular cartilage and significant pain and functional limitations. Despite its high prevalence and impact on individuals' quality of life, effective therapies for OA are limited. Text mining, a subfield of data mining, offers a powerful approach to leverage the vast amount of biomedical literature and accelerate drug discovery in OA. This journal focuses on the advancements and applications of text mining techniques in OA drug discovery, aiming to uncover novel therapeutic targets, identify drug candidates, and understand disease mechanisms. Through the integration of diverse data sources, including scientific articles, clinical trial reports, and genetic databases, text mining enables the extraction and analysis of valuable information. This approach facilitates the identification of potential targets and pathways implicated in OA pathogenesis, the repurposing of existing drugs for OA treatment, and the development of personalized treatment strategies. However, challenges such as data quality and algorithm performance should be addressed. Experimental validation is crucial to ensure the reliability of text mining-based findings. Text mining-based drug discovery in OA holds great promise for transforming the field and accelerating the development of innovative treatments for this debilitating condition.