当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Ã…Âukasz Oleksy, Wojciech Czarny, Wojciech Bajorek, Paweł Król, Anna Mika and Renata Kielnar
Objective: To identify the difference in infraspinatus, posterior deltoid, and teres minor muscle fatigability between the dominant and non-dominant side in elite volleyball players and to examine the differences between three sEMG signal processing methods used in assessment of shoulder muscle imbalance due to fatigue in volleyball players.
Methods: In 18 male volleyball players (21-26 years; 186.6 ± 8.4 cm; 85.7 ± 9.8 kg) with no previous shoulder injury the bioelectrical activity of the right and left infraspinatus, posterior deltoid, and teres minor muscles was measured during 60 seconds of isometric contraction in prone position with the shoulder in external rotation. Fatigue related changes as mean frequency shift were calculated from the RAW sEMG signal using 3 processing methods: FFT (Fast Fourier Transform), STFT (Short Time Fourier Transform) and CWT (Morlet Continues Wavelet Transform).
Results: There were no statistically significant differences (p>0.05) in the values of the mean frequency slope, intercept and difference between dominant and non-dominant sides in all the evaluated muscles. There were no significant differences between FFT and STFT sEMG signal processing methods in mean frequency slope, intercept values and difference. The sEMG signal processing using CWT showed the significantly higher values of mean frequency slope for infraspinatus and teres minor muscles. Significantly lower values of mean frequency intercept were observed for the infraspinatus, posterior deltoid and the teres minor muscles. There were no significant differences observed in mean frequency difference for all the evaluated muscles.
Conclusions: In elite volleyball players without previous shoulder injury, the fatigue indices in muscles of the shoulder region were similar on both the dominant and non-dominant sides. Therefore, we have hypothesized that asymmetric shoulder loading during volleyball training should not be considered as an obvious factor increasing the risk of shoulder injury. Muscle fatigue indices measured by sEMG may be a sensitive and objective method of evaluation, but may reach different values depending on the used signal processing method. Consequently, the clinical interpretation and any comparison between different measurements, without knowledge of how those values were calculated, may be misleading and be the reason for misdiagnosis.