当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

抽象的な

The generation of anti-tumour bystander killing by genetically engineered ovarian tumour cells and the influence o -irradiation: implications for clinical use as Cancer Vaccines.

DR Jehad Zweiri

Cellular based therapeutic approaches for cancer rely on careful consideration of finding the optimal cell to execute the cellular goal of cancer treatment. Cell lines and primary cell cultures have been used in some studies to compare the in vitro and in vivo efficacy of autologous vs -irradiation on a range of tumor cell lines in conjunction with suicide gene therapy of cancer. To determine the efficacy of this modality, a series of in vitro and in vivo experiments were conducted using genetically modified and unmodified tumor cell lines. Following co-culture of HSV-TK modified tumor cells and unmodified tumor cells both in vitro and in vivo we observed that the PA-STK ovarian tumor cells -irradiation, completely abolishing their ability to induce bystander killing of unmodified tumor cells. In contrast, TK-modified human and mouse mesothelioma cells were found to retain their in vitro and in vivo bystander killing effect -irradiation. Characterisation of tumor cell death showed that PA- -irradiation. These results suggest that PA-STK cells are not suitable for clinical application of suicide gene therapy of cancer, as l -irradiation (100Gy) interferes with their bystander killing activity. However, the human mesothelioma cell line CRL-5830-TK retained its bystander killing potential after -irradiation (100Gy). CRL-5830 may therefore be a suitable vehicle for HSV-TK suicide gene therapy. This study highlights the diversity among tumor cell lines and the careful considerations needed to find the optimal tumor cell line for this type of whole cell tumour vaccination.