ISSN: 1165-158X

細胞および分子生物学

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

抽象的な

UNBS5162 Inhibits U251 Glioma Cells Proliferation and Metastasis by Promoting Apoptosis

Luo Li, Pin Guo, De-Hong Wan and Guang-Ping Liu

Naphthalimides have potent anti-cancer activity against human cancer cells. UNBS5162, as a derivative of naphthalimide, is capable of removing primary amine group and reducing toxicity. Recently studies have discovered that UNBS5162 could significantly down-regulate pro-angiogenic chemokines in human prostate tissue, indicating it might have an anti-angiogenic effect. In this work, we intended to explore the functional role of UNBS5162 on glioma cells proliferation, migration and invasion. Cell viability, migration and invasion capabilities of U251 cells were examined by Cell Counting Kit-8 (CCK-8) and transwell assays. The cell apoptosis was tested by Annexin V-FITC/ PI and flow cytometry. Apoptosis-associated proteins and the related-markers of Phosphatidylinositol 3-kinase (PI3K) were examined by western blot analysis. The CCK-8 test suggested that UNBS5162 markedly suppressed the viability of glioma cell line U251. UNBS5162 markedly repressed glioma cell migration and invasion, which was shown from results of transwell assay. Further, UNBS5162 promoted glioma cell apoptosis rate, accompanied by reduced expression level of anti-apoptotic protein Bcl-2 and elevated expression level of pro-apoptotic protein Active Caspase-3 and Bax in U251 cell line administrated with UNBS5162. Additionally, UNBS5162 suppressed the Phosphatidylinositol 3-kinase (PI3K) signaling pathways in U251 cell line. Therefore, the current finding unveils that UNBS5162 can repress glioma cell viability and induce glioma cell apoptosis by regulating the PI3K signaling pathway, suggesting it might be a potentially promising drug target for clinical glioma therapy.