当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Boitt M, Ndegwa C and Pellikka P
Recent advances in hyperspectral remote sensing techniques and technologies allow us to more accurately identify larger range of crop species from airborne measurements. This study employs hyperspectral AISA Eagle VNIR imagery acquired with 9 nm spectral and 0.6 m spatial resolutions over a spectral range of 400 nm to 1000 nm. The area of study is the Taita hills in Kenya. Various crops are grown in this region basically for food and as an economic activity. The crops addressed are: maize, bananas, avocados, and sugarcane and mango trees. The main objectives of this study were to study what crop species can be distinguished from the cultivated population crops in the agricultural landscape and what feature space discriminates most effectively the spectral signatures of different species. Spectral Angle Mapper (SAM) algorithm together with some dissimilarity concepts was applied in this work. The spectral signatures for crops were collected using accurate field plot maps. Accuracy assessment was done using independent training vector data. We achieved an overall accuracy of 77% with a kappa value of 0.67. Various crops in different locations were identified and shown.