当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Zhonke Surj
Biofortification of crops with iron, like wheat, is a good way to deal with iron deficiency, which causes hidden hunger. We now know more about how iron accumulates in wheat grains thanks to a number of recent studies that examined the genetics that control iron concentrations in wheat grains. However, plant genetics make it difficult to breed iron-rich wheat cultivars successfully. In addition to the widespread recognition of microbes associated with wheat, there is evidence that microbes influence plant genetics and the iron concentration in grain. The rhizosphere (rhizobacteria) or the inner wheat tissues (endophytes) were home to the microbes that make up the plant microbiome. They have complex hereditary qualities and impact iron take-up, remobilization, aggregation, and bioavailability, consequently either straightforwardly or by implication adding to grain iron biofortification in wheat. While it has been possible to exceed the targeted iron biofortification requirement of 59 g Fe/g cereal grain in rice (60-140 g), the majority of wheat lines only reach 20-40 g Fe/g wheat grain. As we would see it, consolidating both plant and microbial hereditary qualities for fruitful iron biofortification in wheat is fundamental. An effective and feasible method for the biofortification of wheat with iron could involve the application of microbes, particularly engineered endophytes that are integrated with plant genes that control iron accumulation.