当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Wei Zhou, Zhengshang Ruan, Bo Xu, Zhiyu Chen, Zirong Huo, Lixia Li and Bin He
We have modified the abstract as ‘Previous studies have already found out that commonly used anesthetic, ketamine, has toxic effects on neurodevelopment. Unlike most rodent models just focusing on neuronal apoptosis caused by ketamine, early stages of neuron development abnormality in zebrafish can be assessed in vivo because of the transparent embryos and larve. And also thanks to its cost-efficiency and quick reproduction, large-scale behavior analyses and gene screens can be conducted in zebrafish. Besides, the whole genome of zebrafish has already been sequenced and its gene functions are highly conserved during evolution, which makes the experiments more reliable on zebrafish model. So Zebrafish has obvious advantages in the researches of ketamine neurotoxicity over the conventional animal models (such as mice). Within this paper we illuminate how we can use this model to study ketamine neurotoxicity. In the future, along with more advanced genetic technologies joining this platform will not only make up for conventional models to deeply understand neurodevelopmental toxicity of ketamine, but also might provide the unique insight to the field of neurodevelopment and neurotoxicity impaired by other drugs