当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
U Ismaila, MGM Kolo, JA Odofin, AS Gana
A three year field experiment was conducted between 2010 and 2012 at the irrigated lowland experimental field of National Cereals Research Institute in Edozhigi (9°04N, 6°7E) of the Southern Guinea savannah ecological zone of Nigeria, to determine the effect of different water depths and seedling rates on yield and yield components of lowland rice. The trial was laid out in a split plot and arranged in a randomized complete block design by six regimes of water depths (5 cm, 10 cm, 15 cm, 20 cm, saturated soil and continuous flow of water at 2 cm depth) was accommodated in the main plot while the seedling rate of 2, 4 and 6 per stand constituted the sub-plots. The results indicated that both grain yield and yield components of rice were enhanced while the water level increased to 20 cm, although both tiller and height were negatively affected by higher water level at the early stage of growth but it was later compensated at later stage. Water depth of 15 - 20 cm revealed higher grain yield of 5051.8, 4700.4 and 4066.0 kg ha-1 which was 84.4%, 85.2% and 84.7% higher than yields obtained from saturated plot in 2010, 2011 and 2012 respectively. Rice yield and yield components were significantly affected by different seedling rates and six seedlings per stand gave grain yield that is 13.1%, 27.8% and 14.4% higher than 2 seedling rate in 2010, 2011 and 2012, respectively. It is therefore concluded that maintaining water depth between 15 to 20 cm and seedling rate of 4 to 6 enhanced yield and yield components of lowland rice