当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Shunsuke Matsumoto, Tatsushi Tsuboi, Godfrey Asea, Atsushi Maruyama, Masao Kikuchi, Michiko Takagaki
Whether a rice Green Revolution in sub-Saharan Africa becomes a reality critically hinges on how far productive upland rice cultivation diffuses in the region. In order to quantify the drought tolerance, the rate of water response and the contribution of yield components to changes in yield due to water availability of upland rice varieties used in sub-Saharan Africa, we conducted water application experiments in Namulonge, Uganda, using NERICA 4, NERICA 10, NARIC 2 and Yumenohatamochi, with five different levels of water application. We found that the NERICA varieties were most drought tolerant, followed by NARIC 2. Yumenohatamochi did not withstand the lowest amount of water application of 378 mm. The results suggested that the minimum water requirement was around 311-400 mm per season for the three varieties used widely in East Africa, and around 420-600 mm for Yumenohatamochi, an upland variety in Japan famous in its drought tolerance. It was estimated that an additional water application of 1 mm increased rice yield by 11-12 kg /ha for the upland varieties tested. The high water response of upland rice was brought about by high water response of four yield components, among which the rate of grain filling contributed most to the increase in yield, followed by number of panicles/m2, number of grains per panicle and 1000- grain weight, in the order of the degree of contribution, for all the varieties tested.